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aUniversity of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000
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Abstract

In vibration fatigue, high-spatial-density experimental damage identifi-
cation is hard to conduct. Fatigue damage is typically localized (in time
and space) and loads can change direction with time. Thermoelasticity stud-
ies the interaction between temperature changes and elastic deformations
in materials: minute changes in temperature can be related to the sum
of the normal stresses, providing information about the multiaxial stress
state. This research discusses the application of thermoelasticity in multiax-
ial criterion resulting in the equivalent uniaxial load. In this research, the
thermoelasticity-based equivalent uniaxial load is related to the established
theory on vibration-fatigue damage estimation in the spectral domain. The
introduced thermoelasticity-based criterion is compared to the Equivalent
von Mises stress criterion. Building on theoretical, numerical, and experi-
mental research, this work examines the limitations of thermoelasticity-based
criterion. Where the surface shear stresses are significantly smaller than the
normal stresses, the numerical and experimental research shows promising
results.

Based on the introduced thermoelastic multiaxial criterion and with the
recent progress in thermal imaging and signal processing, new possibilities
for a close-to-real-time full-field fatigue-damage estimation open up.

∗Corresponding author
Email address: janko.slavic@fs.uni-lj.si (Janko Slavič)
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1. Introduction

Vibrating structures are prone to failure because of material fatigue, es-
pecially when excited at, or close to, one of their eigenfrequencies [1, 2]. Dif-
ferent approaches and methods are available for vibration-fatigue analysis.
They can be defined in the time- or frequency-domain. Frequency-domain
methods are preferred when the excitation is random and only the statisti-
cal distribution of the excitation is known [3]. This is applicable in struc-
tural dynamics, where the random excitation is usually provided in terms of
Power Spectral Density (PSD) functions. Multiaxial, non-Gaussian and non-
stationary excitation [4, 5, 6, 7] and their influence on fatigue life [8, 9] have
been extensively researched in recent years. Fatigue damage can also be re-
lated directly to the dynamic properties of a structure by using the modal de-
composition, which greatly reduces the calculation times [10, 11]. For uniax-
ial loads, different damage-estimation methods using spectral moments have
been developed, such as: Dirlik [12], Tovo-Benasciutti [13], Gao-Moan [14],
Petrucci-Zuccarello [15], Zhao-Baker [16]. For a review of more than 20 meth-
ods, see [17]. The material parameters for high-cycle fatigue (S-N curve) are
defined for uniaxial stress states [1]. Thus, for the multiaxial stress states, the
response stress tensor must be converted into the uniaxial equivalent stress.
For this, several multiaxial vibration-fatigue criteria are available. In struc-
tural dynamics, the criteria defined in the frequency-domain are especially
interesting [18, 19, 20]; for comparison studies, see [21, 22]. In the last year,
several new approaches have been researched. Schmidt and Kraft [23] pro-
posed the linear-wave-interference equivalent-stress method, which is based
on the complex invariant. Aime et al. [24] researched the fatigue-damage
multi-spectrum and extreme-response multi-spectrum. Sui et al. [25] re-
searched, by analogy to the Projection-by-Projection criterion, an improved
fatigue-response spectrum method. Despite the recent efforts in multiaxial
criteria, the frequency-domain formulation of the equivalent von Mises stress
(EVMS), as defined by Preumont et al. [26], is still frequently used. A draw-
back of the EVMS is that it disregards the phase angles between the normal
and shear stresses, so it is only valid if they are in phase [27, 28].

If the theoretical methods to describe the multiaxial loads see great
progress, we see relatively little progress in the field of identifying fatigue
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damage; potentially real-time and full-field. In recent years there has been
an increasing utilization of non-contact full-field measurement techniques in
structural dynamics [29, 30]. Cameras based in the visible spectrum can be
used for measuring displacements and deformations [31] and also for image-
based experimental modal analysis [32]. For a vibration-fatigue estimation,
the strain mode shapes are required. To identify strain shapes with the
visible-spectrum camera, the relationship between displacement and strain
must be known. For the Euler-Bernoulli beam, the second spatial deriva-
tive of the measured displacement must be calculated [33], which greatly
increases the noise level [34]. Displacements must also be in-plane, as the
out-of-plane displacements are not detected with a traditional setup (multi-
ple cameras [35] and frequency-domain triangulation [36] enable out-of-plane
measurement).

In contrast to conventional cameras, cameras operating in the infrared
(IR) spectrum do not require any pattern or lighting, since measurements
are not based on displacement identification but rather directly on stress-
induced temperature differences. However, some measures have to be taken
to minimize the IR reflection from surroundings and background IR radia-
tion [37]. Furthermore, thermal cameras take advantage of the thermoelastic
effect to measure the stress (also known as Thermoelastic stress analysis
(TSA) [37]). Knowing the Young’s modulus, the strain shapes are obtained
without spatial derivations. Stress caused by out-of-plane displacements can
be measured as well [33].

Thermoelastic stress analysis is an experimental method that uses var-
ious types of infrared sensors to determine the stresses on the surfaces of
materials [37, 38]. The fundamental theory upon which it operates is long
known [39, 40]; however, it has only recently become applicable in vari-
ous fields, due to the advances in technology for detecting small tempera-
ture changes at the level of a fraction of a mK at relatively high frequen-
cies [41, 42].

High-speed, infrared thermal cameras that are capable of achieving sam-
pling frequencies up to several kHz have been successfully used to identify
strain mode shapes using the thermoelastic principle [33, 43] and also to de-
termine the spatial damage-intensity distribution of the excited modes [44]
with the modal decomposition method [10].

When a thermal camera is used for measuring multiaxial stresses on the
surface of a structure, it provides a scalar value directly, i.e., the sum of
the normal stresses, while disregarding the shear stresses. This conversion
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from the full tensor to the scalar value is similar to the calculation of the
uniaxial equivalent stress, as done in vibration-fatigue analysis [45]. There
is currently a limited understanding of using thermoelasticity-based mea-
surements in multiaxial vibration fatigue in comparison to other methods.
Therefore, in this research, a new multiaxial vibration-fatigue criterion based
on thermoelasticity is introduced. The criterion sums the normal stresses of a
stress response, and uses the obtained uniaxial equivalent stress for vibration-
fatigue analysis. By doing so, the damage that would be identified with a
thermal camera is simulated. A numerical experiment is conducted in which
the proposed criterion is compared to the established EVMS, as the struc-
ture is excited with a broadband random signal. The experimental research
compares the numerical findings to a real case.

This research is organized as follows. The theoretical background for
the vibration fatigue, structural dynamics and thermoelasticity is given in
Sec. 2. The proposed thermoelastic multiaxial damage criterion is presented
in Sec. 3. Sec. 4 describes a numerical experiment using the proposed crite-
rion, and a real experiment with the thermal camera. In Sec. 5, the results
from the numerical and real experiments are compared and discussed. The
last section draws the conclusions.

2. Theoretical background

2.1. Thermoelastic effect

The thermoelastic effect describes the relation between the stress state
and the temperature difference that occurs in materials during loading [39,
40]. Under adiabatic conditions, local heating under compression and lo-
cal cooling under expansion can be observed. During harmonic excitation,
the harmonic stresses in a solid material produce a harmonic temperature
response, related to the first stress invariant (i.e., the sum of the normal
stresses) [46]. The amplitude of the temperature variations are typically of
the order of mK. Two conditions are required to achieve an adiabatic pro-
cess. First, the deformations must be within the elastic range; second, the
reversibility of the process must be achievable, e.g., the process must occur
fast enough so the heat dissipation to the surroundings and other parts of the
material is negligible [43]. For metals, the adiabatic conditions are achieved
at a few Hz of harmonic excitation (e.g., aluminium at 5 Hz) [47], which
means that the adiabatic condition is generally satisfied for applications in
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structural dynamics [33]. For adiabatic conditions and isotopic materials,
the thermoelastic effect is defined as (for details, see Appendix A):

∆σkk = −∆T
ρ

αT0

cp (1)

or:
∆T = Km (∆σxx + ∆σyy + ∆σzz) (2)

where ∆σkk represents the sum of the change of the normal stresses in
all three directions (∆σxx,∆σyy,∆σzz) and Km is the thermoelastic con-
stant [48]:

Km = −αT0

ρ cp
(3)

T0 is the temperature of the surroundings and α is the coefficient of heat
expansion.

2.2. Stress response of MDOF systems

Vibration fatigue is generally related to continuous elastic structures.
With the exception of very simple structures that can be described ana-
lytically, geometrically complex structures have to be defined with a system
of differential equations, assuming hysteresis damping and N -degrees of free-
dom (MDOF). In real-world cases, MDOF systems theory is often applied to
the finite element models, that enable effective and accurate analysis of com-
plex structures. The system of equations can be written in matrix form [49]:

Mẍ(t) + iDx(t) + Kx(t) = f(t), (4)

where x(t) and ẍ(t) are the displacement and the acceleration vectors, re-
spectively. M, D and K are the mass, damping and stiffness matrices, re-
spectively. f is the vector of the excitation forces. By assuming a harmonic
excitation x(t) = X eiωt and a harmonic response f(t) = F eiωt, where ω is
the angular frequency and X, F are the complex vectors of the response and
excitation amplitudes. For harmonic conditions, Eq. (4) can be rewritten
as [50, 51]:

X =
(
−ω2M + iD + K

)−1︸ ︷︷ ︸
H(ω)

F, (5)

where H(ω) is the receptance matrix. Based on orthonormality [51], the
receptance matrix H(ω) is written in a diagonal form, where complex eigen-
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values are defined as λ2
r = ω2

r (1 + iηr). Diagonal dots
. . . denote a diagonal

matrix:

H(ω) = Φ


. . .

ω2
r (1 + iηr) − ω2

. . .


−1

ΦT (6)

ωr is a natural frequency and ηr is the damping loss factor of the r-th mode.
The mass-normalized eigenvectors of a system are stacked in a matrix (each
column corresponds to the r-th vector). Φ = [ϕ1,ϕ2, . . .]

The response obtained using the receptance matrix H(ω) is in the form
of displacements X(ω). For the purpose of vibration-fatigue analysis, the
stress response Xs(ω) is required. From the r-th displacement mode shape
ϕr, the r-th strain mode shape ϕε

r is first obtained using the differential field
operator D [51]:

ϕε
r = Dϕr, (7)

where:

D =
1

2

(
∇ + ∇T

)
(8)

The r-th stress mode shape can be then obtained using Hooke’s law, under
the assumption of small displacements, by using the stiffness tensor C:

ϕs
r = Cϕε

r (9)

Using these relations, the stress response to a given excitation can be calcu-
lated [51, 52]:

Xs(ω) = CDX(ω) = Φs


. . .

ω2
r (1 + iηr) − ω2

. . .


−1

ΦT

︸ ︷︷ ︸
Hsf (ω)

F(ω) (10)

Hsf (ω) is the stress frequency-response function (FRF) that can be written
as a sum of the FRFs of all N modes:

Hsf (ω) =
N∑
r=1

rHsf (ω) =
N∑
r=1

rAs

ω2
r − ω2 + iηrω2

r

, (11)
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where rAs denotes the stress modal constants matrix for the r-th mode [53]:

rA
s =


ϕs
1rϕ1r · · · ϕs

1rϕjr · · · ϕs
1rϕNdr

...
. . .

...
. . .

...
ϕs
irϕ1r · · · ϕs

irϕjr · · · ϕs
irϕNdr

...
. . .

...
. . .

...
ϕs
Nsr

ϕ1r · · · ϕs
Nsr

ϕjr · · · ϕs
Nsr

ϕNdr


Ns×Nd,

(12)

ϕs
ir and ϕjr represent the values of the stress modal shapes ϕs

r and the dis-
placement modal shapes ϕr, respectively. Nd and Ns denote the degrees
of freedom of the modal displacements ϕr and the modal stress shapes ϕs

r,
respectively. To determine the system’s response to random excitation, the
power spectral density (PSD) of the stress response Sss(ω) is calculated,
where Sff (ω) represents the PSD of the excitation force [51, 54, 55]:

Sss(ω) = Hsf (ω) · Sff (ω) ·H∗ T
sf (ω), (13)

where ∗ denotes the complex conjugate. Sff (ω) is a matrix with a size of
3 × 3, while Sss(ω) has a size of 6 × 6.

In vibration-fatigue analysis the consideration of the full FEM model
results in a large numerical problem [10]. However, as the solution in the
frequency domain is usually limited to a smaller frequency range, only a
subset of the natural frequencies denoted by M can be considered, which
greatly reduces the calculation times, since the number of natural frequencies
M is substantially smaller than the total number of natural frequencies N ;
the reduced FRF can be expressed as [10]:

H̃sf (ω) =
M∑
r=1

rHsf (ω) (14)

If the natural frequencies are well separated from each other in the frequency
domain, the power spectral density of the stress response can be approxi-
mated by [10]:

S̃ss(ω) = H̃sf (ω) · Sff (ω) · H̃∗ T
sf (ω) ≈

M∑
r=1

rHsf (ω) · Sff (ω) · rH∗ T
sf (ω) (15)
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Under the assumption that an individual mode only contributes to the dam-
age in the vicinity of its own natural frequency, the following equation is
obtained [10]:

S̃ss(ω) =
M∑
r=1

rAs · Sff (ω) · rA∗ T
s

ω4 − 2ω2ω2
r + (1 + η2)ω4

r

(16)

2.3. Multiaxial criterion

For a vibration-fatigue analysis, the full response stress tensor must be
converted into the uniaxial equivalent stress according to a selected criterion,
which can later be used for a damage estimation [1, 45]. The reason for this is
that the vibration-fatigue analysis is based on the Palmgren-Miner hypothesis
of linear damage accumulation [56, 57], where the material properties for
cyclic uniaxial stress states are known.

The stress state in the time domain can be described by the stress-tensor
components:

σ(t) = [σxx(t), σyy(t), σzz(t), σxy(t), σxz(t), σyz(t)]

Using the probabilistic approach in the frequency domain [21], the stress-
tensor components are expressed through a PSD matrix Sss(ω) with a di-
mension of 6 × 6:

Sss(ω) =

Sxx,xx(ω) · · · Sxx,yz(ω)
...

. . .
...

Syz,xx(ω) · · · Syz,yz(ω)


The diagonal of this matrix contains the autospectral density functions,

while the upper and lower triangular parts contain the cross-spectral density
functions.

The multiaxial criteria in the frequency domain are frequently obtained as
a reformulation of the criteria defined in the time domain and are classified
in the following categories: critical plane criteria [45] and stress-invariant
criteria [58]. For a review of multiple multiaxial criteria see, for example,
Carpinteri et al. in [59] who reviewed the maximum normal or shear stress,
normal strain on the fracture plane, maximum principal stress, Tresca and
von Mises stress.

Generally, multiaxial criteria define the relation between the components
of the stress tensor and the uniaxial equivalent stress. Depending on the
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type of criteria, the relation between a tensor and the equivalent stress can
be linear or non-linear [60]. For criteria with linear relations (e.g., maximum
normal stress or strain, maximum shear stress), the same types of criteria
that are used in the time domain can be used on the PSD in the frequency
domain; The equivalent stress PSD can be calculated as a linear combination
of the stress PSD components [60]. Non-linear criteria are defined by a non-
linear relation in the time domain and need to be reformulated for use in
the frequency domain. One of such criteria is the Preumont and Piéfort
reformulation of the equivalent von Mises stress (EVMS) [26, 61, 21]. EVMS
transforms the PSD of the stress tensor Sss(ω) into the PSD of the uniaxial
equivalent stress [26]. For the reduced model, the EVMS is defined as [51]:

S̃c(ω) =
M∑
r=1

rSc =
M∑
r=1

Trace [Q · rSss(ω)] , (17)

where Q is a constant matrix:

Q =


1 −1/2 −1/2 0 0 0

−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (18)

2.4. Vibration fatigue using spectral methods

In probabilistic approach to vibration fatigue, the value of damage in-
tensity d is used instead of absolute damage value D, as the calculations are
based in the frequency domain. The damage intensity represents the damage
rate or damage per unit time and is given with the equation [51]:

d =
D

T
, (19)

where T represents the fatigue life or the time after which the failure occurs.
Note that D represents the amount of damage that denotes failure, which
is usually 1, but can sometimes be chosen differently [51]. Most frequency-
domain methods for vibration-fatigue analysis rely on spectral moments. To
compute these spectral moments, the uniaxial equivalent of the stress PSD
S̃c(ω) is required. Assuming the modes are well separated, the spectral mo-
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ments for the reduced model are calculated using [51]:

rmi = 2

∫ ∞

0

ωi
rSc(ω) dω, (20)

where the index r is used to describe the participation of a particular mode
shape (for details, see [10]). The spectral moments of the individual mode
shapes are then summed for the reduced spectral moment:

m̃i =
M∑
r=1

rmi. (21)

Based on the computed spectral moments, damage intensity for the broad-
band random process can be determined using one of the methods available,
e.g., the Tovo-Benasciutti method [62], which defines a linear relation be-
tween the broadband damage intensity dTB and narrowband damage estima-
tor dNB [63]. It is defined by the equation:

dTB =
[
b + (1 − b)αk−1

2

]
α2 dNB, (22)

where b is a broadband weighing parameter, approximated using the spectral
moments [13]. αi is a spectral width parameter [51]. For the broadband
weighing parameter b, the following approximation was used [13]:

bTB
app =

(α1 − α2) [1.112 (1 + α1α2 − (α1 + α2)) e2.11α2 + (α1 − α2)]

(α2 − 1)2
(23)

3. Application of thermoelasticity in multiaxial vibration-fatigue
criterion

This section introduces the thermoelasticity-based multiaxial vibration-
fatigue criterion that has the advantage of being directly measured using a
high-speed thermal imaging camera. One of the goals of this research is to
determine the validity of the thermoelasticity-based multiaxial criterion in
comparison with the EVMS.

Thermoelasticity relies on the sum of the normal stress amplitudes. Based
on Eq. (10) and (11), the formulation for determining the response stress
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amplitudes of a MDOF system is:

Xs = Hsf (ω) F =
N∑
r=1

rAs

ω2
r − ω2 + i ηr ω2

r

F (24)

Expressing the modal constant matrix rAs with all the components (12),
the following matrix equation is obtained, where only the contribution of a
single mode r is considered for the purpose of a simple derivation.

σxx

σyy

σzz

σxy

σxz

σyz

 = ζ(ω)


ϕσxxϕx ϕσxxϕy ϕσxxϕz

ϕσyyϕx ϕσyyϕy ϕσyyϕz

ϕσzzϕx ϕσzzϕy ϕσzzϕz

ϕσxyϕx ϕσxyϕy ϕσxyϕz

ϕσxzϕx ϕσxzϕy ϕσxzϕz

ϕσyzϕx ϕσyzϕy ϕσyzϕz


fxfy
fz

 (25)

ζ(ω) represents the dynamic part of the equation:

ζ(ω) =
1

ω2
r − ω2 + iηrω2

r

(26)

Inserting the stress components from Eq. (25) into the thermoelastic
law (2), the thermoelastic effect for a single mode system can be expressed,
where the normal stress amplitudes are summed and the shear stress ampli-
tudes are neglected:

∆T/Km = σxx + σyy + σzz = ζ(ω)
(
ϕσxx + ϕσyy + ϕσzz

)
(fxϕx + fyϕy + fzϕz)

(27)
Eq. (27) shows, how the thermoelastic effect (the sum of the normal stress

amplitudes) can be calculated and related to the temperature change ∆T .
However, in vibration-fatigue analysis, the PSDs of the stress response are
needed (not the amplitudes) (20).

The equivalent stress PSD of the thermoelastic criterion cannot be simply
calculated as a sum of the normal stress PSD components (auto-spectral
densities), as they are positive values by definition and do not include the
phase or sign information. On the other hand, the thermoelastic criterion
relies on the sum of the normal stress amplitudes (not the PSD), considering
their signs (2), resulting in the negative (compressive) and positive (tensile)
stresses being subtracted. This means that the thermoelastic criterion needs
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to be reformulated for use in the frequency domain.
Similar to the EVMS criterion formulation (17), the proposed thermoelasticity-

based criterion is defined with the constants matrix Q. In this case, a ther-
moelastic criterion matrix that sums the normal stresses in the PSD formu-
lation is:

Qthermo =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (28)

The Qthermo matrix is used in equation (17). For a single mode:

rSthermo(ω) = Trace [Qthermo · rSss(ω)] , (29)

Inserting rSss (16) into Eq. (29):

rSthermo(ω) =

(
∆T

Km

)2

︸ ︷︷ ︸
camera

= Trace
[
Qthermo · ζ(ω) rAs Sff (ω) rA

∗ T
s

]︸ ︷︷ ︸
simulation

(30)

Considering Eq. (30) in components notation, the formulation can be sim-
plified to the thermoelasticity-based equivalent uniaxial stress PSD:

rSthermo(ω) =

(
∆T

Km

)2

︸ ︷︷ ︸
camera

=
(
ζ(ω)

(
ϕσxx + ϕσyy + ϕσzz

)
(fxϕx + fyϕy + fzϕz)

)2

︸ ︷︷ ︸
simulation

(31)
On one hand, the thermoelasticity-based equivalent stress rSthermo(ω) can

be determined with a numerical simulation, as a response to the given exci-
tation PSD. Based on the thermoelasticity-based equivalent stress, the spec-
tral moments and damage are computed, as described in Sec. 2.4 (instead of

rSc(ω) the rSthermo(ω) has to be used). Details are given in the numerical
experiment (Sec. 4.1), which compares the proposed thermoelasticity-based
uniaxial equivalent to the EVMS (17) criterion.

On the other hand, the equivalent stress rSthermo(ω) can be measured
directly with the thermal imaging camera, as shown with the underbraces in
Eq. (30) and (31). As the thermal camera measures the temperature/stresses
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on the surface of structures, the formulation for the thermoelastic effect can
be simplified for the plane-stress (i.e., ∆σ3 = 0) [44]. Expressing Eq. (2) for
plane-stress and in principal stress notation:

∆T = Km (∆σ1 + ∆σ2) , (32)

meaning, that out of the established multiaxial criteria [59], the thermoelasticity-
based criterion is the most similar to the maximum principal stress criterion.
The thermoelastic criterion on the surface (∆σ1 +∆σ2) is only different from
the maximum principal stress (∆σ1) by the amplitude of the second principal
stress ∆σ2, which is smaller than ∆σ1 by definition. The thermoelasticity-
based criterion is valid when the surface shear stresses are negligible (no
in-plane or out-of-plane shear).

4. Experimental research

To compare the thermoelastic multiaxial criterion to the EVMS, a numer-
ical FEM experiment is discussed in Sec. 4.1 followed by a real experiment
in Sec 4.2.

4.1. Numerical experiment

A FEM model of the aluminium Y-shaped specimen [64] shown in Fig. 1
is used. The model is excited using a random uniform broadband excitation
Sff,z(ω) along the z-axis, exciting the first six modes r = 1, 2, . . . , 6. The
model is fixed on the bottom side in x and y-axis, which simulates the spec-
imen fixed to the shaker with the vertical motion free (z-axis). The first six
eigenmodes are calculated using the open-source software SfePy [65]. The
eigenfrequencies are given in Tab. 1.
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Figure 1: Y-Sample mesh and boundary conditions.

Table 1: Eigenfrequencies of the numerical model (clamped, free in z-direction).

ωr [Hz] 1600 3831 6556 6846 11410 15840

From the 6 displacement mode shapes ϕr, the six stress mode shapes ϕs
r

are also calculated, as shown in Eq. (9).
Each of the six stress modes has six stress components. In Fig. 2, the

stress components of the fourth stress mode ϕs
4 are shown. As the mode

shapes have no units, each of the plots in Fig. 2 is normalized to its maximum
value.
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Figure 2: Stress mode shape components for the fourth mode ω4 = 6846 Hz. Stress is
normalized to the maximum and minimum of each stress component.

The EVMS and the thermoelastic criterion are used as described in Sec. 3
to calculate the uniaxial equivalent stress response. To analyse the extent, to
which the shear stresses are present in the model, the thermoelastic equiv-
alent stress (29) is compared to the largest shear-stress component in the
same color range 3. It can be observed that in this model the maximum
shear-stress component is approximately 10 times smaller than the sum of
the normal stresses, used in thermoelastic criterion, meaning, that the as-
sumption of the small shear stresses is valid in this case.
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Figure 3: Numerical results at 4th natural frequency: a) uniaxial equivalent stress response
Sthermo(ω4) vs b) shear stress Szy(ω4). Scale is normalized to max of Sthermo(ω4).

The spectral moments are then calculated for each mode of both response
PSDs. Eq. (20) can be simplified for the case of uniform excitation acting
only in the z-direction [10]:

rmi = 2 ·
∫ ∞

0

ωi ζ(ω) dω︸ ︷︷ ︸
rIi

·Trace
[
Q · rAs · Sff,z · rA∗ T

s

]
(33)

The integral rIi only needs to be calculated once for each mode r, and once
for each order of the spectral moment i. All the moments are summed for
the complete reduced model (21). The Tovo-Benasciutti method is used to
determine the damage intensity (22).

The mode-damage contribution was calculated, as by Mršnik et al. [10],
using the EVMS. A measure of the damage intensity Dr is determined, which
represents the effect a single mode has on the total damage intensity d. To
determine Dr, the partial damage intensity d\Mr is calculated using all the
modes with the exception of mode r. It is then subtracted from the total
damage intensity d [10]:

Dr =
d− d\Mr

d
= 1 −

d\Mr

d
(34)

It was discovered that the fourth eigenmode ω4 = 6846 Hz contributes the
most to the damage intensity, as shown in Fig. 4. Note that the damage
contribution in Fig. 4 is on a logarithmic scale.
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The damage intensity using the EVMS and the thermoelastic criterion is
displayed in Fig. 5. The thermoelastic criterion estimates the damage in the
critical point approximately 50% higher than the EVMS.

Figure 4: Damage contribution of the specific modes.

Figure 5: Damage, determined using (a) EVMS and (b) thermoelastic criterion.

4.2. Real experiment

An experiment with a thermal camera was conducted to further research
the numerical experiment and to compare the simulated damage intensity to
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the measured thermoelastic effect.
The same Y-shaped aluminium specimen as used in the numerical ex-

periment (Fig. 1) was clamped vertically to the head of an electro-dynamic
shaker (model LDS V555). The Telops FAST m3K high-speed thermal imag-
ing camera was positioned as shown in Fig. 6. The specimen was painted
with a high-emissivity, low-reflectivity black paint, to maximize the visibility
of the thermoelastic effect, and minimize the IR reflections from the environ-
ment that could be falsely identified as thermoelasticity. To further reduce
any IR reflections, an absorbing material was placed behind the specimen,
resulting in the specimen being better distinguishable from the background
in the video. To decrease the eigenfrequencies to where they are measurable
with the thermal camera, two 200 g weights were mounted on the arms of
the Y-specimen, as shown in Fig. 6b. With the added masses, the fourth
eigenfrequency, previously ω4 = 6846 Hz, is reduced to ω4 = 313 Hz. Al-
though the weights cause an overall increase of the stresses on the specimen,
it is assumed that the relative distribution of the stresses in the fatigue zone
and the location of the critical points are not qualitatively influenced by
the weights. As it was discovered in numerical experiment, the fourth mode
shape contributes the most to the damage, see Fig. 4. In the real experiment
with the thermal camera, only the fourth mode was excited with the purpose
of increasing the signal-to-noise ratio of the measurement, as the thermoelas-
tic effect in structural dynamics is typically at the level of millikelvin, which
is near the sensibility of the camera. To excite the fourth mode shape, the
specimen was excited with a random signal from 300 to 330 Hz.
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(a) Thermal camera, shaker, specimen (b) Y-specimen

Figure 6: Experimental setup.

Thermal camera measurement. A Telops FAST m3K high-speed thermal
camera was used to capture the thermoelastic effect on the surface of the
specimen. The camera was set to a resolution of 132 × 128 pixels and 5000
FPS (Frames Per Second). The camera uses 16-bit encoding and has a Noise
Equivalent Temperature Difference (NETD) [66] of 32 mK. The length of
the measurement was set to 5 seconds. A Fourier transformation was used
to convert the temperature-variation measurement at each pixel into the fre-
quency domain. Averaging of a subset size 3× 3 around the pixel of interest
was used to improve the signal-to-noise ratio of the measurement.

The thermoelastic effect at ω4 = 313 Hz was clearly visible in the fre-
quency domain. By mapping the amplitudes of the temperature variation of
the observed mode shape to every pixel, the heatmaps shown in Fig. 7 and
Fig. 8 are generated.

In Fig. 7, the results from the FEM analysis and the thermal camera
measurement are compared. In Fig. 7a, the simulated first invariant of the
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fourth mode shape is displayed (ϕσxx4 +ϕσyy4 +ϕσzz4) (31). Fig. 7b shows the
same stress response, measured with a thermal camera, when exciting the
fourth mode shape. This stress response is proportional to the first invariant
of the stress mode shape, as shown in Eq. (31). In Fig. 7b, the imaginary
component of the measurement is shown, with the purpose of also displaying
the sign of the temperature’s amplitude.

Fig. 8 shows the differences between the calculated damage intensity using
the EVMS criterion and the proposed thermoelastic criterion in comparison
with the damage calculated using the thermoelastic effect, measured with
the thermal camera.

(a) (b)

Figure 7: Comparison of (a) simulated stress mode shape (first invariant) ϕσxx4 +ϕσyy4 +
ϕσzz4 and (b) measured stress response at the fourth natural frequency.

Figure 8: Comparison of calculated damage intensity by (a) EVMS FEM: dEVMS, (b)
thermoelastic criterion FEM: dthermo and (c) measured thermoelastic effect.
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5. Discussion

In the synthetic experiment the damage intensities of the model were cal-
culated using the established EVMS method and the proposed thermoelasticity-
based method. By comparing the results, it is possible to assess the extent to
which the thermoelastic criterion is close to the EVMS. Further, the numer-
ical experiment is used to investigate whether the analysis of the multiaxial
vibration fatigue based on the thermal imaging camera is reasonable. The re-
sults of the numerical experiment are also compared with a real thermoelastic
effect measured with a thermal imaging camera.

For a Y-sample, Fig. 7 shows the first invariant of the fourth stress mode
shape in comparison with the experimentally measured thermoelastic re-
sponse, when narrowband excited close to the fourth natural frequency. The
results of the FEM modal analysis and the experiment with the thermal cam-
era show a good correlation, as the measured distribution of the tensile and
compressive stresses is clearly proportionate to the FEM simulation.

It is essential to verify the locations of the damage-critical points on the
model, as this is the key information for the damage-reasoning analysis in
real-world applications. Comparing the locations of critical points in Fig. 8,
it can be observed that the EVMS and the thermoelasticity-based criterion
give similar results, i.e., critical points are on the thinnest section of the
model/experiment around the central hole. While the location of the critical
points shows good alignment, the distribution of the damage intensity around
them differs. The damage intensity, calculated using the EVMS (Fig. 8a),
is more evenly distributed across the whole side cross-section of the model,
while the thermoelastic criterion gives a localization of the damage intensity
at the centre, with an oval-shaped distribution around it (Fig. 8b). The
difference in results is caused by the fact that the thermoelastic criterion
does not consider the shear stresses, unlike the EVMS, which considers the
full stress tensor. The shear stresses are predominant near the edges of the
model in this case, like it can be observed in Fig. 2, while the normal stresses
have their maximum near the centre of the cross-section.

Comparing the thermoelastic effect heatmap measured with the thermal
camera (Fig. 8c) with the FEM result (Fig. 8b), it is evident that the simu-
lated critical points match the measured hotspots of the thermoelastic effect.
The distribution of the measured amplitudes has a distinct oval shape with
a maximum in the centre, which resembles the damage intensity computed
using the thermoelastic criterion. The damage measured with the thermal
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camera is higher than the simulated damage because of the added weights in
the experiment.

6. Conclusions

Based on minute changes in the surface temperature, the thermoelas-
ticity enables full-field, close-to-real-time and non-contact stress-state mea-
surements of dynamically excited structures. When measuring multiaxial
stress states, the thermal camera inherently acts as a multiaxial criterion as
it identifies the uniaxial equivalent stress (scalar value) on the surfaces of
the structures. Under the adiabatic conditions, the temperature oscillations
are directly proportionate to the first invariant of the stress tensor (sum of
the normal stresses). The temperature oscillations can be measured with a
fast thermal imaging camera and related to the first stress invariant through
the material’s thermoelastic constant and directly used for damage-intensity
identification. The second stress invariant (related to shear stresses) cannot
be detected with a thermal camera.

This research introduces the thermoelasticity-based multiaxial vibration
fatigue criterion as an alternative to the established methods (e.g., EVMS
criterion). The advantage of the thermoelastic criterion is the ability for its
direct identification with a thermal camera, as there is currently no other
method for the full-field multiaxial damage detection. The research intro-
duces the definition of the thermoelastic multiaxial vibration-fatigue crite-
rion, which is used for simulating results similar to those measured with a
thermal camera during harmonic excitation. The damage, calculated with
the proposed thermoelastic criterion, is compared to the EVMS in a numer-
ical experiment.

The limitations of the thermoelastic approach are showcased. The pro-
posed thermoelasticity-based damage identification can only be applied if the
normal stresses are much bigger than the shear stresses. Since the thermal
camera measures the first stress invariant, it cannot detect shear stresses,
limiting its applicability in certain multiaxial stress conditions. However,
normal stresses still play a crucial role in fatigue crack initiation in many
cases, such as bending, where cyclic tension and compression occur. Thus,
while the criterion is not suited for all scenarios, it is highly effective in cases
where normal stresses dominate. Comparing the damage calculated with
the EVMS and the thermoelastic criterion on the Y-shaped model, the gen-
eral location of the critical points coincides. The observed differences were
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due to the fact that the thermoelastic criterion overestimates the damage
in comparison with the EVMS under biaxial tension or biaxial compression
and underestimates the damage when the principal stresses on the surface
have different signs, with zero damage being detected under pure shear stress
(σ1 = −σ2).

As the proposed criterion is related to the first stress invariant, it is in-
dependent of the principal axis orientation, meaning it has the same value
under rotating principal directions. By the categorization of numerical mod-
els, defined by Skibicki [67], the thermoelasticity based criterion falls under
the category of models which, technically speaking, allow calculations for
non-proportional loading, but do not take into account the influence of non-
proportionality on fatigue life or strength.

The simulated vibration-fatigue damage of the Y-sample is compared to
a real experiment. The vibration-fatigue damage experimentally identified
at fourth mode shape corresponds to the one numerically simulated. The
experiment shows that real-time and full-field experimental identification of
vibration-fatigue damage is possible. Based on the proposed approach, a
new insight into vibration-fatigue damage is possible, potentially fostering
new research in understanding the mechanisms of multiaxial damage.
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[3] Matjaž Mršnik, Janko Slavič, and Miha Boltežar. Frequency-domain
methods for a vibration-fatigue-life estimation – application to real data.
International Journal of Fatigue, 47:8–17, 2013.

23



[4] Ronghui Zheng, Jinpeng Li, and Huaihai Chen. Investigation of planar
translational and rotational stationary non-gaussian random vibration
test. Mechanical Systems and Signal Processing, 191:110186, 2023.

[5] Arvid Trapp and Peter Wolfsteiner. Estimating higher-order spectra via
filtering-averaging. Mechanical Systems and Signal Processing, 150, 11
2020.

[6] Guiwei Zhang, Weiguang Li, Xiaochen Wang, and Zhichun Yang. Influ-
ence of flexible structure vibration on the excitation forces delivered by
multiple electrodynamic shakers. Mechanical Systems and Signal Pro-
cessing, 169:108753, April 2022.

[7] Michele Sgamma, Massimiliano Palmieri, Michele Barsanti, Francesco
Bucchi, Filippo Cianetti, and Francesco Frendo. Study of the response
of a single-dof dynamic system under stationary non-gaussian random
loads aimed at fatigue life assessment. Heliyon, 2024.

[8] Giacomo D’Elia, Emiliano Mucchi, and Giorgio Dalpiaz. A novel
methodology for dynamic response maximisation in multi-axis acceler-
ated random fatigue testing. Mechanical Systems and Signal Processing,
181:109491, 2022.
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Appendix A. Thermoelasticity

The laws of the thermoelastic effect are based on the laws of thermody-
namics [68] and the laws of continuum mechanics [69]. From the first and
second laws of thermodynamics, the expression is derived [39]:

du = δq + δw, (A.1)

where u is the internal energy, q is the heat transferred from the surroundings
to the system and w is the work exchanged with the surroundings. The fol-
lowing relations define the work w and the entropy s in differential form [68]:

δw =
σij dεij

ρ
, (A.2)

ds =
δq

T
, (A.3)
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where σij and εij are the stress and the deformation tensors and ρ is the
material density [48]. Using relations (A.2) and (A.3), Eq. (A.1) becomes:

du = T ds +
σij dεij

ρ
, (A.4)

To derive the thermoelastic law, the Helmholtz free energy H is introduced
in its differential form [46]:

dH = du− T ds− s dT (A.5)

Inserting Eq. (A.1) into Eq. (A.5), the following expression is derived, where
the assumption of local reversible changes is used:

dH =
σij dεij

ρ
− s dT (A.6)

The Helmholtz free energy H can also be defined as a state function, i.e., as
two partial derivatives, first, at constant temperature and second, at constant
deformation [46]:

dH =

(
∂H

∂εij

)
T

dεij +

(
∂H

∂T

)
εij

dT (A.7)

By comparing Eq. (A.6) and Eq. (A.7), the following relations are obtained [46]:

σij = ρ
∂H

∂εij
(A.8)

s = −∂H

∂T
(A.9)

The entropy s can also be defined as a state function of deformation and
temperature:

ds =

(
∂s

∂εij

)
T

dεij +

(
∂s

∂T

)
εij

dT (A.10)
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From (A.3) and (A.9), the specific heat per unit mass at zero strain cε is
introduced to derive the thermoelastic law:

cε =

(
δq

dT

)
εij

=

(
T ds

dT

)
εij

= −T

(
∂2H

∂T 2

)
εij

(A.11)

Inserting Eq. (A.8), Eq. (A.9) and Eq. (A.11) into Eq. (A.10), results in [46]:

ds = −1

ρ

∂σij

∂T
dεij + cε

dT

T
(A.12)

From the definition of entropy (A.3) and Eq. (A.12), it follows:

δq

T
= −1

ρ

∂σij

∂T
dεij + cε

dT

T
(A.13)

Finally, expressing dT , Eq. (A.13) becomes:

dT =
T

ρ cε

∂σij

∂T
dεij +

δq

cε
(A.14)

From the laws of thermodynamics, Eq. (A.14) is derived, which gives the
relation between temperature change and both the stress and strain tensors.
To define the relation between the temperature change and the stress, the
strain tensor must be related to the stress tensor using constitutive rela-
tions [69]:

An equation that relates the strain tensor to the stress tensor can be
written in the following way:

σij = 2µ εij + (λ εkk − γ ∆T ) δij , (A.15)

Eq. (A.15) is valid for homogenous isotropic conditions and µ, λ and γ are
Lamé parameters [70]. δij is the Kronecker delta defined as:

δij =

〈
1 if i = j
0 if i ̸= j

(A.16)

From Eq. (A.15) and (A.16) it is evident that the temperature changes
are only related to diagonal values of the stress tensor, i.e., the normal
stresses [70]. Combining Eq. (A.14) and constitutive relation (A.15) results
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in:
∂σij

∂T
= −γ δij , (A.17)

Eq. (A.17) can be inserted into Eq. (A.10):

ds = cε
dT

T
+

γ

ρ
δij dεij (A.18)

The product of δij and dεij is εkk, which is the first invariant of the strain
tensor or cubic dilatation [69]:

ds = cε
dT

T
+

γ

ρ
dεkk (A.19)

By integrating Eq. (A.19) and considering the initial conditions sv = 0,
(ϵij)0 = ϵij in T = T0, the following equation is obtained (assuming small
temperature differences ∆T ≪ T0 [40]):

s = cε
∆T

T0

+
γ

ρ
∆εkk (A.20)

Considering an adiabatic process, s = 0, Eq. (A.20) becomes:

∆εkk = −∆T

γ T0

ρ cε (A.21)

By using the constitutive relation in Eq. (A.15), Lamé constants and defining
the relation between the heat capacities at constant pressure cp and zero
strain cε (for more details see [46]), the law of the thermoelastic effect is
derived:

∆σkk = −∆T
ρ

αT0

cp (A.22)

or:
∆T = Km (∆σxx + ∆σyy + ∆σzz) (A.23)

where Km is the thermoelastic constant [48]:

Km = −αT0

ρ cp
(A.24)

T0 is the temperature of the surroundings and α is a coefficient of heat ex-
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pansion.
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